
HLL cheatsheet
2024–03–22

Complete specification available on hal-03294999 or hal-03356342, or Prover website.

Meta variables
• 𝑎, 𝑏 range over boolean expressions;
• 𝑇, 𝑈, 𝑉 range over types;
• 𝑒, 𝑡, 𝑢 range over expressions;
• 𝑣, 𝑥, 𝑦 range over variables.

Names
Names stand for variables (may they be streams or terms), functions, constants, types
or namespaces.
foo refer to the name foo.
bar::foo refer to the name foo in the namespace bar.

Types

bool Booleans
int Integers
int [-4, 32] Integer between -4 and 32.
int signed 8 8-bit signed integer.
int unsigned 8 8-bit unsigned integers
tuple {𝑇1, 𝑇2} tuples containing one element of type 𝑇1 and one of type 𝑇2

struct {𝑒1: 𝑇1, 𝑒2: 𝑇2} structure with two fields 𝑒1 and 𝑒2 respectively of types
𝑇1 and 𝑇2

𝑇 ^ (𝑡1, 𝑡2) multi-dimensional arrays of size 𝑡1 × 𝑡2 of elements of type 𝑇
𝑇1 * 𝑇2 -> 𝑈 functions with two arguments of types 𝑇1 and 𝑇2 and range 𝑈

Type declarations and definitions

enum {red, blue} colour; declare type colourwhich contains two values
sort {flower, grass} < herbs declare sort herbswith two elements
sort herbs, trees < plants declare sorts herbs and trees as sub-sorts of the sort

plants
𝑇 𝑣; declare 𝑣 as an alias for type 𝑇

Boolean connectives
Connectives are sorted by decreasing precedence: if ⋄ occurs before ⋆, then 𝑎 ⋆ 𝑏 ⋄ 𝑐 is
𝑎 ⋆ (𝑏 ⋄ 𝑐).
~ 𝑎 negation, true when 𝑎 is false
𝑎 & 𝑏 conjunction, true if 𝑎 is true and 𝑏 is true

𝑎 # 𝑏 disjunction, true if 𝑎 is true or 𝑏 is true
𝑎 -> 𝑏 implication, true if either 𝑎 is false or 𝑏 is true. Right associative: 𝑎 -> 𝑏 -> 𝑐 is

𝑎 -> (𝑏 -> 𝑐).
𝑎 <-> 𝑏 equivalence, true when 𝑎 is the same as 𝑏
a #! 𝑏 exclusive disjunction (a.k.a. xor), true if 𝑎 isn’t the same as 𝑏 (same prece-

dence as <->)
true truth, also spelled True or TRUE
false falsity, also spelled False or FALSE

Integer connectives
Connectives are sorted by decreasing precedence: if ⋄ occurs before ⋆, then 𝑎 ⋆ 𝑏 ⋄ 𝑐 is
𝑎 ⋆ (𝑏 ⋄ 𝑐).
𝑎 > 𝑏 greater than, true when 𝑎 is strictly greater than 𝑏
𝑎 >= 𝑏 greater than or equal to, true when 𝑎 is when greater or equal to 𝑏
𝑎 < 𝑏 less than, true when 𝑎 is strictly lower than 𝑏
𝑎 <= 𝑏 less than or equal to, true when 𝑎 is lower or equal to 𝑏
𝑎 >> 𝑏 right shift
𝑎 << 𝑏 left shift
- 𝑎 negation or additive inverse of 𝑎
𝑎 * 𝑏 multiplication
𝑎 + 𝑏 addition
𝑎 - 𝑏 subtraction
𝑎 / 𝑏 integer division (fractional part is omitted)
𝑎 /> 𝑏 floor division (the greatest integer less than or equal to 𝑎 divided by 𝑏)
𝑎 /< 𝑏 ceiling division (the least integer greater than or equal to 𝑎 divided by 𝑏)
𝑎 % 𝑏 division remainder of 𝑎 / 𝑏
𝑎 ^ 𝑏 exponentiation
42 integer literal with the value 42

Temporal operators

X(𝑒) shift the stream 𝑒 one cycle forward, read next
pre(𝑒) shift the stream 𝑒 one cycle backward, read previous
pre(𝑒, 𝑡) like pre(𝑒) but takes value 𝑡 for initialisation

Quantifiers

ALL 𝑣:𝑇 (𝑎) universal quantification, also known as ∀𝑣 ∈ 𝑇, 𝑎
SOME 𝑣:𝑇 (𝑎) existential quantification, also known as ∃𝑣 ∈ 𝑇, 𝑎
SELECT 𝑣:𝑇 (𝑎) the unique element 𝑥 of domain 𝑇, such that expression 𝑎, with 𝑣

substituted by 𝑥, becomes true. Undefined, if there is no such a single element.
Also known as ∃!𝑣 ∈ 𝑇, 𝑎.

https://hal.science/hal-03294999v1
https://hal.science/hal-03356342v1
https://www.prover.com/hll/ldd

SUM 𝑘:𝑇 (𝑒) also known as ∑𝑘∈𝑇 𝑒. If 𝑇 is empty, evaluates to 0.
PROD 𝑘:𝑇 (𝑒) also known as ∏𝑘∈𝑇 𝑒. If 𝑇 is empty, evaluates to 1.
$min 𝑣:𝑇 (𝑒) the minimal element among the set {𝑒 ∣ 𝑣 ∈ 𝑇}
$max 𝑣:𝑇 (𝑒) the maximal element among the set {𝑒 ∣ 𝑣 ∈ 𝑇}

Operators

𝑓(𝑡) application of function 𝑓 to expression 𝑡
𝑡 = 𝑢 expression equality
𝑡 != 𝑢 expression inequality
if 𝑎 then 𝑡 else 𝑢 conditional
if 𝑎 then 𝑡1 elif 𝑏 then 𝑡2 else 𝑡3 conditional
(𝑡 | 𝑝1 => 𝑡1 | 𝑝2 => 𝑡2) reduces to 𝑡1 if 𝑡matches pattern 𝑝1 and to 𝑡2 if 𝑡matches

𝑝2; patterns are terms which may contain the wildcard _
𝑡.2 third element of tuple 𝑡
𝑡.𝑒 access field 𝑒 of structure 𝑡
𝑡[2] third element of array 𝑡

Sections

All declarations and definitions must occur in a section.
Inputs: free streams
Constants: constant streams (bool or int)
Types: type declarations and definitions
Declarations: stream declarations
Definitions: definitions of declared streams
Constraints: expressions in this section are assumed to hold in all models
Proof obligations: for any expression 𝑎 in this section, if one exhibits a model in

which 𝑎 is false, then model checking fails.
Outputs: of the system modelized

Stream declarations and definitions

v := 𝑒; define variable v
𝑇 foo(𝑈, 𝑉); declare function foo taking two arguments of types 𝑈 and 𝑉, re-

turning a value of type 𝑇
foo(𝑥, 𝑦) := 𝑒; define function foo

𝑇 𝑣; declare a free stream 𝑣 of type 𝑇
Namespaces: Foo { … } declare namespace Foo

License
This document have been produced by Prover based on anHLLCheatsheet produced
by Alstom under a Creative Commons “Attribution 4.0 International” license. The
content and the form of this document have been modified.
All rights reserved to Prover Technology AB.

https://creativecommons.org/licenses/by/4.0/deed.en

